|
Сети Frame RelayТехнология, которая в последствии получила название Frame Relay (Коммутация кадров), первоначально была разработана в начале 1980-х для использования в сетях ISDN. Технология Frame Relay обеспечивает информационное взаимодействие на физическом и канальном уровне OSI и была предназначена динамического разделения ресурсов физического канала между пользовательскими процессами передачи данных. Использование технологии FR обеспечивало ряд преимуществ по сравнению с технологиями X.25 и ISDN, которые использовались для обеспечения доступа к распределенным вычислительным ресурсам.В таблице приведены результаты сравнения вышеописанных технологий по некоторым параметрам с технологией FR.
Принципы построения и компоненты сетей Frame RelayПервоначально информационное взаимодействие технологии FR осуществлялось только на физическом и канальном уровне. В отсутствии сетевого уровня взаимодействия и заключается принципиальное отличие технологии Frame Relay от ранее существовавших технологий построения сетей. Кадр FR содержит минимальное управляющей информации, следствием этого является высокая эффективность передачи данных. Технология Frame Relay не имеет встроенных функций контроля доставки и управления потоком кадров. Предпологается, что каналы передачи данных являются достаточно надежными, а функции управления потоком выполняются протоколами верхних уровней. Эти особенности и обеспечивают преимущества сетей, которые построены по технологии Frame Relay. Компоненты Frame RelayКомпонентами сети Frame Relay являются устройства трех основных категорий -
Также как и в сети X.25, основу Frame Relay составляют виртуальные каналы (virtual circuits). Виртуальный канал в сети Frame Relay представляет собой логическое соединение которое создается между двумя устройствами DTE в сети Frame Relay и используется для передачи данных. В сети Frame Relay используется два типа виртуальных каналов коммутируемые (SVC) и постоянные (PVC). Коммутируемые каналыКоммутируемые виртуальные каналы представляют собой временные соединения, которые предназначены для передачи импульсного трафика между двумя устройствами DTE в сетях Frame Relay. Процесс передачи данных с использованием SVC состоит из четырёх последовательных фаз:
Несмотря на то, что использование SVC придает определенную гибкость сетевым решениям, этот механизм не получил большого распространения в сетях Frame Relay. Постоянные каналыPVC представляют собой постоянное соединение, которое обеспечивает информационный обмен между двумя DTE устройствами в сети Frame Relay. Процесс передачи данных по каналу PVC имеет всего две фазы:
Идентификаторы виртуальных каналовДля обозначения виртуальных каналов в сети Frame Relay используется аппарат DLCI (Data-Link Connection Identifier). По своему назначению в сетях Frame Relay идентификатор DLCI совпадает со назначением номера логического канала в сетях X.25. DLCI определяет номер виртуального порта для процесса пользователя. Устройство FRAD LAN1 использует виртуальный канал DLCI 101 для организации обмена данными с сетью LAN 2 и виртуальный канал DLCI 102 для организации обмена данными с сетью LAN 3. Для организации обмена данными с сетью LAN 1 устройство FRAD LAN 2 использует виртуальный канал DLCI 200. Обычно идентификатор DLCI имеет только локальное значение и не является уникальным в пределах сети. Конкретные значения DLCI для каждого пользователя определяются провайдером сервиса Frame Relay. Структура кадра Frame RelayКадр протокола Frame Relay содержит минимально необходимое количество служебных полей.
Поле FLAGДанное поле выполняет функцию обрамления кадра. Принцип формирования поля FLAG в кадре Frame Relay соответствует принципам формирования поля FLAG в кадре LAPB. Поле HEADERВ поле заголовка кадра размещается информация, которая используется для управления виртуальными соединениями и процессами передачи данных в сети Frame Relay. Структура первого байта поля заголовка:
Структура второго байта поля заголовка:
Поле DLCIПоле DLCI занимает 10 бит в заголовке кадра. В это поле коммутатор FR помещает идентификатор, используя который получатель кадра может правильно интерпретировать содержимое поля полезной нагрузки. Биты FECN и BECNБиты FECN и BECN обеспечивают функционирование процедуры явного указания о возникновении перегрузки Explicit Congestion Notification. Эта процедура является одним из двух механизмов, которые обеспечивают возможность управления процессом передачи данных в сети Frame Relay. Ситуация перегрузки в сети Frame Relay может возникнуть в том случае, когда один из компонентов (коммутатор FR) начинает получать больше кадров, чем он способен обработать и отправить. Для предотвращения дальнейшего усугубления этого положения коммутатор формирует в кадрах, которые он передает в направлении основного источника входящих кадров признак BECN (Backward Explicit Congestion Notification). Предполагается, что в ответ на получение этого признака источник должен уменьшить поток формируемых кадров в данном направлении. В кадрах, которые передаются в направлении получателя пакетов, коммутатор формирует признак FECN (Forward Explicit Congestion Notification). Этот признак информирует получателя информации о возможности возникновения аварийной ситуации в текущем процессе передачи данных. Бит DEБит DE (Discard Eligibility) используется для обеспечения функционирования второго механизма управления потоком данных в сетях Frame Relay. Описание этого механизма будет приведено ниже. Битом DE помечаются кадры, которые при возникновении ситуации перегрузки на коммутаторе FR должны быть уничтожены в первую очередь. Поле полезной нагрузкиПоле полезной нагрузки в кадре Frame Relay имеет переменную длину и предназначено для переноса блоков данных протоколов верхних уровней. Поле FCSСодержит 16-ти разрядную контрольную сумму всех полей кадра Frame Relay за исключением поля "флаг". Параметры качества обслуживания Frame RelayВ качестве таких параметров в сети Frame Relay используются
Согласованная информационная скоростьЗначение CIR определяется для каждого PVC пользователя. Согласованная информационная скорость это максимальная скорость, с которой пользователь может обеспечивать информационный обмен по отдельному каналу PVC. Сумма значений CIR всех PVC пользователя не должна превышать 75-80 процентов пропускной способности физического канала провайдера. Гарантированный объем и интервал неравномерности трафикаДанный параметр услуги предназначен для определения временного интервала допустимой неравномерности трафика пользователя Tc в соответствии с формулой: Тс = Bc/CIR. Таким образом, значение Bc определяет максимальный объем данных пользователя, который может быть передан без потерь за период Тс. Не гарантированный объем передаваемых данныхЗначение Be определяет величину предельного увеличения трафика пользователя для конкретного виртуального канала PVC. Кадрам пользователя, которые образовали добавку Be к согласованному значению Bc, присваивается признак DE, что означает их удаление при возникновении перегрузок в сети. Сигнализация и управление вызовами в сетях Frame RelayИспользование технологии Frame Relay в качестве универсальной транспортной среды вызвало необходимость разработки дополнительных спецификаций, которые обеспечивали более гибкое управление ресурсами PVC и SVC в сети Frame Relay. Одной из первых таких спецификаций была спецификация LMI. Cпецификация LMIСпецификация LMI (Local Management Interface), была разработана в 1990 году инициативной группой, в которую вошли компании Cisco Systems, StrataCom, Northen Telecom и DEC. Возникновение этой группы положило начало созданию неформальной организации по развитию технологии Frame Relay - форума Frame Relay. Спецификация LMI позволила использовать следующие виды сервиса:
Сообщения LMI передаются в информационной части кадра Frame Relay и обеспечивают передачу управляющей информации в направлении FRAD - сеть и обратно. Для передачи управляющих сообщений LMI используется специальный PVC #1023. Спецификации ANSI и ITU-TПри создании спецификации ANSI и ITU-T широко использовались материалы, которые были подготовлены специалистами FRF. Благодаря этому указанные спецификации отличаются незначительно и допускают совместную реализацию. В частности, сигнализация в сетях Frame Relay определена в спецификациях
Ссылки по теме: |
|
© 2000 Александр Филимонов |